Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №2» г. Мензелинска Республики Татарстан

Рабочая программа

элективного курса по химии

Уровень образования (класс): **среднее (полное) общее образование, 10-11 классы с использованием оборудования центра «Точка роста»**

Разработано: ШМО учителей, химии, биологии, географии, математики, физики.

Пояснительная записка

Рабочая программа элективного курса по выбору «Углубленное изучение отдельных тем общей химии» составлена на основе авторской (Н.И. Тулина. Углубленное изучение отдельных тем общей химии»; опубликована: Химия. 10-11 классы: сборник элективных курсов/авт.-сост. В.Е. Морозов. — Волгоград: Учитель, 2007.)

Большое значение для успешной реализации задач школьного химического образования имеет предоставление учащимся возможности изучения химии на занятиях элективного курса, содержание которого предусматривает расширение и упрочнение знаний, развитие познавательных интересов, целенаправленную предпрофессиональную ориентацию старшеклассников.

Ряд разделов школьной программы по химии должен рассматриваться в рамках профильной школы более углубленно. Это относится, в частности, к основам термохимии, теории кислот и оснований, строению атома и химической связи. Учащиеся не получают представления о том, как определить тип гибридизации атомных орбиталей при образовании ковалентной связи, не умеют использовать принцип смещения химического равновесия, не понимают, как можно применить полученные в курсе физики знания в области основ термодинамики к химическим реакциям. Крайне формальный подход практикуется по отношению к окислительно-восстановительным процессам и вопросам гидролиза. В результате у школьников возникают поверхностные, а порой и неверные представления в области общей химии.

Между тем эти разделы общей химии включены в задания итоговой аттестации за курс основной средней школы. Вот почему необходимо в программу обучения в 10-11 классе включить элективный курс химии, направленный на ликвидацию указанных пробелов в подготовке выпускников, отработку навыков решения задач и поиска ответов на сложные вопросы общей химии.

Старшие школьники, тяготеющие к естественнонаучной специализации, просто обязаны проработать в дополнение к стандартной программе следующие темы: основы термохимии и учение о химическом равновесии, свойства растворов и кислотно-основные равновесия, строение атомов и химическая связь (включая представления о геометрической форме частиц), основные понятия химии комплексных соединений.

Поверхностное изучение химии не облегчает, а затрудняет ее усвоение. В связи с этим, элективный курс, предназначенный для учащихся 10-11 классов, подается на более глубоком уровне и направлен на расширение знаний учеников.

Элективный курс предназначен для учащихся 10-11-ых классов и рассчитан на 68 часов (1 час в неделю). Особенность данного курса заключается в том, что занятия идут параллельно с изучением курса органической химии в 10-ом классе, что позволит учащимся 11-х классов на заключительном этапе обучения в средней общеобразовательной школе углубить и систематизировать знания по общей и неорганической химии.

Элективный курс может быть использован как с целью обобщения знаний по химии, так и с целью подготовки учащихся к Единому Государственному экзамену по химии, начиная уже с 10-ого класса.

Цель элективного курса: систематизировать и обобщить знания учащихся по общей и неорганической химии.

Задачи:

- 1) продолжить формирование знаний учащихся по общей и неорганической химии;
- 2) продолжить формирование на конкретном учебном материале умений: сравнивать, анализировать, сопоставлять, вычленять существенное, связно, грамотно и доказательно излагать учебный материал;

- 3) работая над развитием интеллектуальных, познавательных и творческих способностей, сформировать у учащихся универсальные учебные действия;
- 4) развить познавательный интерес к изучению химии; помочь учащимся в осознанном выборе профессии.

Структура курса, наследуя традиционные методики, в то же время рассчитана и на такие нетрадиционные методики как самостоятельная работа по поиску информации с литературой совместно с консультацией учителя, а также поиск информации в сети Интернет, лекционные занятия (учащиеся привыкают к лекционной системе, с которой им рано или поздно придётся столкнуться в старших классах и при последующем обучении за пределами школы), проектная деятельность.

Отбор теоретического материала произведён в соответствии с наиболее значимыми разделами фундаментальной химии. Материал структурирован согласно дидактическим принципам.

Резервное время (из 10 общих часов — 4 часа) используется для проведения семинарских занятий по теме с целью обобщения и систематизации знаний, подготовки к контрольной работе.

Инструментарий оценивания обучения: тестовые задания, защита творческих проектов, конференция в форме мультимедийной лекции.

Методы и формы обучения: урок-лекция, консультация, самостоятельная работа с литературой, использование информационно-коммуникативных технологий.

Формы организации учебной деятельности: индивидуальная, групповая, коллективная.

Ожидаемый результат:

- знание основных законов и понятий химии и их оценивание;
- умение ориентироваться среди различных химических реакций, составлять необходимые уравнения, объяснять свои действия;
- успешная самореализация школьников в учебной деятельности; подготовка к ЕГЭ; расширение кругозора.

Учащиеся должны знать:

- основные сведения о свойствах химических элементов; классификацию химических элементов; закономерности изменения свойств химических элементов в периодах и группах периодической системы Д. И. Менделеева; сведения о строении атомов элементов малых и больших периодов; принципы распределения электронов по энергетическим уровням и подуровням; последовательное заполнение электронных оболочек в атомах; распределение электронов по орбиталям; понятие валентность, валентные возможности атомов; виды химической связи, свойства ковалентной связи, степень окисления; влияние типа химической связи на свойства химического соединения; понятие аллотропия; геометрическое строение молекул; виды гибридизации электронных орбиталей; тепловой эффект эндотермических и экзотермических реакций; зависимость скорости реакции от условий её протекания; механизм гомогенного и гетерогенного катализа; условия смещения химического равновесия, классификацию неорганических веществ; механизм электролитической диссоциации в растворах и расплавах электролитов; химические свойство кислот, солей, оснований в свете теории электролитической диссоциации; классификацию окислительно-восстановительных реакций; влияние на характер ОВР концентрации веществ, среды раствора, силы окислителя и восстановителя, температуры; устройство гальванического элемента; устройство аккумулятора; отличия продуктов реакции электролиза водных растворов и расплавов солей и щелочей; строение комплексных солей и их номенклатуры.

Учащиеся должны: 1. Знать/понимать:

1) Важнейшие химические понятия

Понимать смысл важнейших понятий (выделять их характерные признаки): вещество, химический элемент, атом, молекула, относительные атомные и молекулярные массы, ион, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем, вещества молекулярного и немолекулярного строения, растворы, электролиты и неэлектролиты, электролитическая диссоциация, гидролиз, окислитель и восстановитель, окисление и восстановление, электролиз, скорость химической реакции, химическое равновесие, тепловой эффект реакции, углеродный скелет, функциональная группа, изомерия и гомология, структурная и пространственная изомерия, основные типы реакций в неорганической и органической химии.

Выявлять взаимосвязи понятий. Использовать важнейшие химические понятия для объяснения отдельных фактов и явлений.

2) Основные законы и теории химии

Применять основные положения химических теорий (строения атома, химической связи, электролитической диссоциации, кислот и оснований, строения органических соединений, химической кинетики) для анализа строения и свойств веществ.

Понимать границы применимости указанных химических теорий.

Понимать смысл периодического закона Д.И. Менделеева и использовать его для качественного анализа и обоснования основных закономерностей строения атомов, свойств химических элементов и их соединений.

3) Важнейшие вещества и материалы

Классифицировать неорганические и органические вещества по всем известным классификационным признакам.

Понимать, что практическое применение веществ обусловлено их составом, строением и свойствами.

Иметь представление о роли и значении данного вещества в практике.

Объяснять общие способы и принципы получения наиболее важных веществ.

2. Уметь:

1) Называть: изученные вещества по тривиальной или международной номенклатуре.

2) Определять/ классифицировать:

- валентность, степень окисления химических элементов, заряды ионов;
- вид химических связей в соединениях и тип кристаллической решетки;
- пространственное строение молекул;
- характер среды водных растворов веществ;
- окислитель и восстановитель;
- принадлежность веществ к различным классам неорганических и органических соединений;
- гомологи и изомеры;
- химические реакции в неорганической и органической химии (по всем известным классификационным признакам);

3) Характеризовать:

- s, p и d-элементы по их положению в Периодической системе Д.И. Менделеева;
- общие химические свойства простых веществ-металлов и неметаллов;
- общие химические свойства основных классов неорганических соединений, свойства отдельных представителей этих классов;
- строение и химические свойства изученных органических соединений.

4) Объяснять:

- зависимость свойств химических элементов и их соединений от положения элемента в периодической системе Д.И. Менделеева;
- природу химической связи (ионной, ковалентной, металлической, водородной);
- зависимость свойств неорганических и органических веществ от их состава и строения;
- сущность изученных видов химических реакций: электролитической диссоциации, ионного обмена, окислительно-восстановительных (и составлять их уравнения).

Тематическое планирование и содержание курса.

№ п/п	Название тем	Кол- во часов	Виды деятельности
	Тема 1. Строение атомов и химическая связь.		
1.	Физический смысл квантовых чисел. Понятие атомной орбитали. Формирование уровней и подуровней в атоме водорода. Многоэлектронные атомы: объяснение их строения с помощью водородоподобной модели.	2	Лекция. Семинар.
2.	Заселение атомных орбиталей электронами. Принцип минимума энергии, принцип Паули и правило Хунда. Структура периодической системы химических элементов Д. И. Менделеева. Определение строения атома по их координатам. Магнитные и энергетические свойства атомов. Виды периодичности свойств химических элементов.	2	Лекция. Семинар.
3.	Образование ковалентной связи. Свойства ковалентной связи. Метод валентных связей.	1	Лекция.
4.	Определение типа гибридизации атомных орбиталей центрального атома для частиц (молекул, ионов) с кратными связями. Предсказание геометрической формы частиц с неподеленными парами электронов.	1	Семинар.
5.	Полярность связи. Дипольный момент связи. И дипольный момент молекулы, их взаимосвязь. Водородная связь.	1	Практическая работа.
6.	Итоговый контроль.	1	Письменная контрольная работа.
	Тема 2. Основы термохимии. Химическое равновесие.		•
1.	Основные определения. Макро- и микросостояние, система и внешняя среда, классификация систем, параметры системы, тепловой эффект и энтальпия химических реакций. Закон Гесса и определение теплового эффекта химических реакций.	2	Решение задач.
2.	Второй закон термодинамики и понятие об энтропии. Направление самопроизвольных процессов в изолированных системах. Энергия Гиббса и направление реакций в закрытых системах.	1	Решение задач.
3.	Химическое равновесие. Его признаки. Константа химического равновесия. Вывод зависимости константы равновесия суммарной реакции от констант равновесия последовательных процессов. Сдвиг химического равновесия под действием внешних факторов (принцип Ле Шателье-Брауна).	1	Решение задач.
4.	Окислительно-восстановительные реакции. Составление уравнений ОВР и подбор коэффициентов методом электронно-ионных полуреакций. Окислительно-восстановительные функции	2	Решение задач.

	веществ и направление ОВР. Понятие о стандартном потенциале.				
5.	Итоговый контроль.	1.	Письменная контрольная работа.		
	Тема 3. Общие свойства растворов. Протонная теория кислот и оснований.				
1.	Дисперсные системы. Способы выражения концентрации раствора. Зависимость растворимости от температуры. Энергетика образования растворов.	2	Решение задач.		
2.	Сильные и слабые электролиты. Степень диссоциации и константа диссоциации. Закон разбавления Оствальда.	1	Решение задач.		
3.	Протонная теория кислот и оснований. Основные определения. Протонные растворители и их автопротолиз. Ионное произведение воды. Водородный показатель и шкала рН.	2	Решение задач.		
4.	Применение протонной теории к распространенным водным растворам. Слабые кислоты, слабые основания, амфолиты. Константы кислотности и основности. Определение рН.	2	Решение задач.		
5.	Гидролиз. Необратимый гидролиз бинарных соединений. Обратимый гидролиз солей. Степень протолиза и кислотность среды. Смещение равновесия протолиза.	1	Решение задач.		
6.	Гетерогенные равновесия в насыщенных растворах малорастворимых сильных электролитов. Произведение растворимости. Условия выпадения и растворения осадков. Сдвиг гетерогенных равновесий в насыщенных растворах малорастворимых электролитов.	2	Решение задач.		
7.	Итоговый контроль.	1	Письменная контрольная работа.		
	Тема 4. Комплексные соединения.				
1.	Основные понятия координационной теории. Типы и номенклатура комплексных соединений.	2	Практическая работа.		
2.	Поведение комплексных соединений в растворах. Диссоциация на внешнесферные ионы и ион координационной сферы. Константы устойчивости (образования) и нестойкости. Получени и разрушение комплексных соединений.	2	Решение задач.		
3.	Решение нестандартных задач.	2	Семинар.		
4.	Итоговый контроль.	1	Тестирование		
5.	Резерв.	1			
Итог	Итого 34				

Литература для учителя

- 1. Аликберова, Л.Ю. и др. Электронное пособие «Протолитические равновесия». Депозитарий электронных изданий ФГУП НТЦ «Информрегистр». Рег. свид. №1200-2, номер гос. учета 0320100391 (28.11.2001).
- 2. Аликберова, Л.Ю. и др. Электронное пособие «Комплексные соединения». Депозитарий электронных изданий ФГУП НТЦ «Информрегистр». Рег. свид. №1499-1, номер гос. учета 0320200384 (12.03.2002).
- 3. Лидин, Р. А., Молочко, В. А., Андреева, Л. Л. Химия. Для школьников старших классов и поступающих в вузы: теоретические основы. Вопросы. Задачи. Тесты. Учеб. пособие. М.: Дрофа,,2001. 576 с.: ил.
- 4. Лидин, Р. А., Якимова, Е. Е., Вотинова, Н. А. Химия, 8 9 кл.: Учеб.пособие / под ред проф. Р. А. Лидина. М.: Дрофа, 2000. 192 с. (Дидактич. материалы.)
- 5. Лидин, Р. А., Якимова, Е. Е., Вотинова, Н. А. Химия, 10 11 кл.: Учеб.пособие / под ред проф. Р. А. Лидина. М.: Дрофа, 2000. 160 с. (Дидактич. материалы.)
- 6. Лидин, Р. А., Андреева, Л. Л., Молочко, В. А. Справочник по неорганической химии. Константы неорганических веществ. М.: Химия, 1987. 320 с.: ил.
- 7. Лидин, Р. А. Аликберова, Л. Ю. Химия: Справочник для старшеклассников и поступающих в вузы. М.: АСТ-ПРЕСС ШКОЛА, 2002. 512 с.
- 8. Углубленное изучение отдельных тем общей химии (автор: Н. И. Тулина) Программы элективных курсов. Химия. 10-11 классы. / авт.- сост. Г.А.Шипарёва.- М.:Дрофа, 2007.-79с.,- (Элективные курсы). Ответственный редактор Г.А.Шипарёва

Литература для учащихся

- 1. Лидин, Р. А., Молочко, В. А., Андреева, Л. Л. Химия. Для школьников старших классов и поступающих в вузы: теоретические основы. Вопросы. Задачи. Тесты. Учеб. пособие. М.: Дрофа,,2001. 576 с.: ил.
- 2. Лидин, Р. А., Якимова, Е. Е., Вотинова, Н. А. Химия, 8 9 кл.: Учеб.пособие / под ред проф. Р. А. Лидина. М.: Дрофа, 2000. 192 с. (Дидактич. материалы.)
- 3. Лидин, Р. А., Якимова, Е. Е., Вотинова, Н. А. Химия, 10 11 кл.: Учеб.пособие / под ред проф. Р. А. Лидина. М.: Дрофа, 2000. 160 с. (Дидактич. материалы.)
- 4. Лидин, Р. А., Андреева, Л. Л., Молочко, В. А. Справочник по неорганической химии. Константы неорганических веществ. М.: Химия, 1987. 320 с.: ил.
- 5. Лидин, Р. А. Аликберова, Л. Ю. Химия: Справочник для старшеклассников и поступающих в вузы. М.: АСТ-ПРЕСС ШКОЛА, 2002. 512 с.